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Abstract

This thesis describes the research work carried out to ful�ll the Master in Computer Science
at the University of Padua. The work was performed during a visit at Yahoo! Research in
Barcelona and was supervised by Roelof van Zwol and Lluis Garcia Pueyo. The visit was
funded by the EU Erasmus Programme. The research work described in this thesis was
part of a larger research project which is underway at Yahoo! Research in Barcelona.

The resarch work described in this thesis aimed at addressing the problem of detecting
and retrieving all the logos contained in an image given as input. The problem of detect-
ing and retrieving a logo consists of a variety of steps, each of which has di�erent possible
solutions. These steps were investigated in this research work. Although logo detection is
an important research problem due to the potential industrial impact, a solution has not
been yet proposed in the literature to our knowledge.

This thesis is organized in two parts: collection preparation and experimental study.
As regards to the former, a collection of logos was designed and implemented to train the
classi�er, to identify and to extract the logo features which were eventually used for logo
detection. The latter regards the detection of logos from an input image. In particular,
the experimental study aimed to detect if the input image contains one or more logos and
to decide which logos are contained.
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Chapter 1

Introduction

Being able to analyze a video, extract frames and trying to �gure out what they contain
automatically is still an open challenge. The problem of entity detection and recognition
in videos can be seen as the analysis of a frames sequence and, therefore, simpli�ed to the
analysis of single image. Unfortunately there are no easy ways to identify correctly what
a picture contains.

This thesis is a part of a larger project focused on the analysis of images, to examine
whether it contains logos, and if so, to recognize them. What is a logo? It's a name,
symbol or trademark designed for an easy recognition. Thus, given a generic image, the
goal of the project is to compare its content with all the brands in a database and identify
which ones match with input image. Moreover, we will try to locate the logo in the input
image, obtaining the correct position.

To better understand how it's structured this work, it's necessary split the main process
in two parts: the �rst one is the data collections preparation, a large set of logos and images
for training and testing, and the second one is the real application. This part is resumed
in the following steps:

� Features Extraction: Extract the key-points of all the logos (and all the test images).
These points are very descriptive for the contents of an image, and they are used to
compare and to analyze parts of images.

� Features Segmentation: Given a large set of key-points, extracted from the logos
collection, we have to segment all of them to obtain groups of common features.

For real application we mean the main goal of the project, that is how to retrieve the
logo(s) from an image given as input. We can resume this procedure in the following points:

� Extract the features: De�ne the key-points of the input image with the same technique
used to extract the key-points from the logos.

� Classify the features: Given the features of the image, we want to �nd the logos
segment that match better each key-point. All the logos points in those segments are
considered possibles candidates logos.
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� Rank the candidates: Now we have a list of logos which have in commons some key-
points with the input image. We want to rank these points by some characteristics
and keep only the most similar ones.

� Select the logo(s): After the ranking we have all the information to decide if there is
or not a logo inside the image and, in case, which one is contained. Besides in this
part we can decide if there are more than one logo.

So, to arrange the assortment of brands, we retrieved all logos from a web site famous
to host a large collection of more than 150K logos1. This collection constitutes our train
set. On the other hand we used 16K images for testing, and we retrieved them from a
website that guarantees the presence of logos in its images2.

The main problem related to the project goal is how to compare two images. We don't
need to compare if an image is more or less similar to another, but if an image is included
into another. The aim is very di�erent and the complexity too. To do this there is only
one way in literature: extract the features points of both images and use them for the
comparison. The �rst issue is how to treat these points, because if we want to detect the
logos features we need a way to compare all the input image points with all the logos ones:
and there is no question to do it point-to-point. In this context it is very important to
know what image features are: they are the characteristic parts of an image, texture, color,
and shape are examples of image features. There are some algorithms that can computes
them as vectors, usually they are structured with 64 or 128 dimensions of �oating values.
It is necessary clarify the di�erence from global and local features. The �rst one describes
the whole image, or a big part of that, as the brightness or the contrast of a photo. The
second one is more speci�c, it describes a point, or a group of close points that are very
characteristics for the image, but for example, the brightness in a small part can be very
di�erent from the global value. This project use the local features because it compares
parts of images and not the entire ones. The main problem then is how to extract features
from images and how to match them with logos in the training set. We extracted them
obtaining a unique signature for every interesting point of the image. The choice of these
points depends on the approach used: usually one feature is described by one vector called
local descriptor. There are several methods to extract these points; in this thesis we'll
discuss about the main ones and we'll explain our decision.
It is important to consider the working environment of this project, because the auto-
matic recognition of logos implies a storage of a large number of data: images of logos,
information on the label, features extracted, etc. Accordingly one of the problems is the
computation time to compare the image with all the logos, we used 175K brands even if
the number is expected to grow day by day.

For the features extraction, the problem is not in the image but in the brand, because

1Brands of the World, http://www.brandsoftheworld.com/
2Group "Brands, Marks & Logos" at Flickr, http://www.�ickr.com/groups/famousbrands/
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a logo may consist of symbols, words or anything else. A common and problematic condi-
tion is that it could be very simple without some particular details than helps to a good
detection; in conclusion it may be hard de�ne a good features extractor and a good com-
parison metrics. After a brief research in literature, we decided to use the SURF descriptor.
This decision was taken for two main reasons: precision and fast computation speed. Given
the input image and its calculated features, we need to match its characteristics with the
logos images in the collection. To avoid the traversal of the entire collection with one-to-one
comparisons, we use some techniques to segment the features in sub-groups by common
properties. A numerical example to understand better the situation should be this: a logos
(200x200) has an average of 100 features points and our collection contains 175K logos so
they will be 17Milion of points; instead an image (500x375) has in average 440 features
points: so, a set of comparisons point-to-point should be about 7500 million operations
and this is unacceptable.
We analyzed di�erent methods to resolve the problem: K-Means clustering, Random Vec-
tors, Balanced Decision Tree, etc. The idea is to split the points collection in groups using
one of these techniques, and retrieve a representative vector for each of them. So, once
computed the vectors of the input image, they will be matched only with these vectors and
not with all the collection. By this we can reduce the number of comparisons and conse-
quently the computation time. To compare two vectors in a multidimensional space there
are many way: we used the Pearson Correlation that measures the similarity calculating
the cosine of the angle between them. It is a technique often used in Text Mining and in
many other �elds.

It's important to de�ne how is structured this thesis because, as we said, this is a part
of a more complex project. This is a Master Thesis in Computer Science and contains
in details only the work developed by the undersigned. The section that regards parts of
di�erent authors are correctly highlighted. For that reason there are not all the experi-
mentation and all the techniques used, but only the main ones, nevertheless the thesis is
wrote to give a full idea of the project and it is structured as follow:

Chapter two: "Related Works", It's essential speci�ed the sources that have allowed
us to study, understand and resolve the various problems encountered in the work.

Chapter three: "Test Collection", In this chapter we'll describe the two collections
used: one with the brands logos and the other one with Flickr's photos. The �rst one as
logos source and the second one as testing images. Will be discuss the reasons of how it
was possible to obtain these collections.

Chapter four: "Features Extraction", Will be discuss about available features and its
problems. There are di�erent descriptors, we'll see the better one for the project after a
short comparison with other methods. Furthermore there will be a brief some applicable
e�ects to the images to try to detect the features in a more clearly way. In the end we'll
describe how to match the points with related problems and solutions.
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Chapter �ve: "Collection Segmentation", In this chapter we'll analyze how to seg-
ment the collection. We'll describe the techniques trying to highlight the advantages and
disadvantages of each methods with a short description of the implementation code.

Chapter six: "Classi�cation and Ranking ", This is the real application process, it
describes all the procedure from the input image to the logos retrieved. It contains the
classi�cations of the features extracted and the selection between the most representative
logos segments. Moreover it contains the techniques to rank the logos candidates.

Chapter seven: "Conclusions and Future Work", This is the �nal discussion about
the work, with comments and observations and moreover with suggestions and future steps
or goals to pursue.



Chapter 2

Related Work

In this chapter we will principally describe the state-of-the-art which will be the basis of
our work: features descriptor, segmentation, classi�cation and clustering. There will be a
short description of many techniques already implemented and used in certain cases which
are closer to our needs. There are di�erent evaluation points to analyze, and some texts
and papers were very useful for our decision.

When we talk about logo detection we must consider di�erent meanings: the main one
is the identi�cation of the logo into a document [1]. In this case the detection is made
easier because of the white background. In [2] is commonly used geometric invariants to
prune the logos database and local invariants to have a more re�ned match; on the other
hand, in [3] they used spatial density to involve a page segmentation computing. Another
spread �eld is the removal of the channel brand from a television program. This issue is
analyzed in many works by Zhu [4] [5] or by Zhang [6]. There are di�erent ways used to
solve these topic, but they are all based on some facts: in television the logo is commonly in
a corner in the same position and, moreover, the background images change continuously,
instead, the logo's pixels that remain �xed [7]. This is useful for commercial development:
in the transmissions recorder where it's required an automatic removal of the advertising.
It's interesting to notice that during a television program they keep the tv logo but not
during the advertisements.

However the original goal of this project is to detect a logo in a video, the main issue
is to manage and retrieve the multimedia data [8]. A brief but complete introduction of
this area is described in [9]. The article was published in 2002 and gives the clue about a
typical scheme of video-content analysis structured on the following points: feature extrac-
tion, structure analysis, abstraction, and indexing. This is broadly the procedure adopted
by our project, but each process poses many challenging research problems. In this area
we cannot avoid mentioning the Sivic and Zisserman's Video Google [10, 11], these two
works are done respectively in 2003 and in 2006 in which they created a strong connec-
tion between video and text retrieval. They compared a video frame to a document and
they considered a visual interest point as a word, applying the techniques of Text Re-
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trieval. Again, in 2005, they published a technical report for MIT [12] with unsupervised
method. A peculiar aspect is the comparison with a semi-supervised approach [13]. In
almost all these works they used the SIFT Descriptor [14]. In this project we will use a
di�erent kind of feature extractor algorithm with similar but faster performance, the so
called SURF [15, 16]. There are other ways to extract local features from an image such
as [17, 18, 19, 20], this does not depend on the presence of edges or corners in the image
but it is purely intensity-based which is invariant to full a�ne transformations. The Harris
detector [21] instead, based on the predecessor presented by Moravec [22] in his PhD thesis,
has the aim to select the corners characteristics. On the other hand the Maximally Stable
Extremal Regions [23] is another blob detection method which extracts some area of inter-
est, similar to a image segmentation; there is additionally an extended version with colour
support [24]. There are many debates and discussions about which is the best descriptor
in [25, 26, 27, 28] for example, but it continues to be an issue without solution.

The main problem of logo detection in images is to �nd the best way to compare the
features extracted from the images to the ones collected in the logo database. If we do
it point-to-point a huge number of comparison will occur. For this reason we need some
expedients. Further aid to our scope it is the segmentation of the image. Segmenting
an image into regions it's very helpful because the area to extract the features is already
segmented and we can compare the features only for determinate surfaces. MIT [29] and
Berkeley [30] built some applications useful to test their segmentation techniques. The
issue of these methods is the hard compatibility with the features extractor algorithm.
Indeed as SIFT or SURF detect a lot of points near the corners or close the borders, com-
puting them only in one region can lead to loss of information. Another way to reduce
operations and computational time is to segment in groups all the set of vectors, and to
analyze the image features to de�ne which is the best group for every point obtained. To
do this a segmentation method results necessary: this is the way chosen by this project.

In this thesis, to split the vectors collection of logos' features, we use a decision tree,
speci�cally a binary decision tree. This is a method commonly used in decision analysis to
help identi�cation. Indeed it's used to �nd the logo into a document too, for example in
[31] to reduce the false positive from the candidates.
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Test Collection

The collection is the starting point for testing our hypothesis and making the tests. It's
necessary to look for a complete logos resource, where there are not only images, but all
the related meta-data as brand name, URL, tags and many other details. These infor-
mation are important for the project, because we want to know all it is possible on the
brands: when a logo is detected, the goal is also to show all the data we have of that brand.

One of the biggest collection available on line is Brands Of The World with more than
170K logos, with an average of 1.8K logos uploaded per month. So, implementing some
applications to �nd automatically all the logos and the meta-data on the website, download
and store them in the database. We did the same procedure for the training set, making
sure that each images contains at least one brand. It is possible to use the Group "Brands,
Marks & Logos" group as an images set already built.

In this chapter we will discuss how it was possible to get the brands and the Flickr
images, with the problems encountered and the relative solutions. Later, will compare the
problem of how to handle all these images. We implemented applications to search and
show immediately the images and the relative information for all our sets.

3.1 Logo Detection Database

We implemented two di�erent databases, the �rst one contains a collection of logos and it
is describe below, the second one contains a collection of images and it is built to perform
tests.

For manage a Large Data Collection where there is the necessity to adding, removing
or in general changing the information, and it's required a good computation speed, it's
usually works with a database as MySQL1 in our situation.

1MySQL 5.1.24 on RedHat Linux
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The database, with the petty name logodetection, was initially very simple, with only
a couple of table, one with brands and the other with famousbrands. Subsequently was
necessary to work with di�erent data, as splitting the famousbrands collection in two parts,
the �rst with the images that does not contains any logos stored in the database, and the
second with only images that contains that logos. To do this automatically, we were work
with the tabs of the Flickr images to know what the image contains, and for the logos we
normalized the brands names. We'll discuss better this point later, still in this chapter.
Another important observation regards the images. It's not saved the single image as blob
�le in the database, but in there, there is only the path of the server where the image are
located. This choose was did for keep the db most lightly, and because later there will be
the possibility to modify on the images, with conversion, �lters and any other e�ects.

The brands table contains all the logos with other information like:

[SQL command for build the brands table]
create table brands
{
brandid integer auto_increment,
code varchar(8) not null,
name varchar (255) not null,
url_logo varchar(255) not null,
url_img varchar(255) not null,
path img varchar(255),
info text,
primary key( brandid )

}

� code is the same value used by the source website to identi�ed the logo (8 digits),

� name of the brand,

� the url of the logo brand is the page where are extracted the information,

� the url of the image is the direct link to the image,

� path is the local position of the downloaded image,

� other brand information saved as html text (Country name, website, ..)

The famousbrands table contains all the photo, enclose in the group "Brands, Marks
& Logos" located in Flicr2, and accessible by the Flickr API with the code: 75819424@N00.
Later on we will describe it better. Below there is a brief description of the table structure:

[SQL command for build the famousbrands table]
create table famousbrands
{

2http://wwww.�ickr.com/groups/famousbrands/
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photoid integer auto_increment,
flickrid bigint not null,
photo_title varchar(255) not null,
url_photo varchar(255) not null,
path_photo varchar(255) not null,
description text,
tags text,
primary key( photoid )

}

� �ickrid is the same code used by the source website (8 digits),

� url_photo is the web link where there are all the information (description, tags,
owner, ..)

� path_photo is the local path where the photo is stored

� description is a short text wrote by the user owner

� tags are wrote by other users, quite important for our tests

These tables were �ll in with a couple of python scripts. For the brands there were
some problems be due to the website, which asks a con�rmation before show up the logo
url, instead, for the Flickrs images, was very easy using the API and a free key. Everything
are explain in details in the next sections.

When we started some tests, we found the necessity to have a di�erent kind of test set.
So we analyze better the Flickr collection to be able to extract more information and to
obtain more then one sub-collection. In the next section is going to be describe what we
needed and how we obtained it.

3.2 Logos Collection

To download all the logos stored on the website, was necessary implement a program to
works automatically. But we encountered few problems doing this. The �rst one is the kind
of character-encoding scheme, so, for some logos originally from di�erent country where
the encoding is not the same, there could happen errors during the decoding of the strings.
For a large collection of data this is a big problem, because it necessary later try to �nd
all the wrong decoding and �x them. To partially resolve this problem, we used a kind of
brute force substitution, between the download and the writting on the database, for the
most commons character code. It is not an elegant solution, but for our scope it works �ne
and fast.

In the table 3.1, is possible to see a short number of information about the collection.
All the logos are in GIF format, this will be a problem for some feature extraction algorithm
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Source http://www.brandsoftheworld.com/logo/
Server media1.barcelona.corp.yahoo.com
Number of Logos 173012
Size 3.7G
Resolution 200 x 200 @ GIF
SURF Vectors 100 (average)

Table 3.1. Retrieved Logos Collection

as OpenSURF, because normally they could work only with JPEG �les. The resolution is
quite normal for a logo, we made di�erent tests with other resolution, but all the images in
this collection keep the same. The average number of SURF vectors refers to the algorithm
OpenSURF, there are logos with a poor number of vectors retrieved (23/40) and this is a
problem for the comparisons, but depends of the structure of the image (background dark,
without corners or angles, words or symbols,. . . ).

3.2.1 Developing

To getting all the logos we implemented a python script, the goal of this application is to
retrieve logos from the web and store them locally, in order to extract visual features and
experiment with them in future steps. Starting from the main directory:

http://www.brandsoftheworld.com/logo/

moving in all the subdirectory (or section)

http://www.brandsoftheworld.com/logo/1/
http://www.brandsoftheworld.com/logo/A/
http://www.brandsoftheworld.com/logo/B/
[...]

and analyzing all the pages in each section

http://www.brandsoftheworld.com/logo/1/index-1.html
http://www.brandsoftheworld.com/logo/1/index-2.html
http://www.brandsoftheworld.com/logo/1/index-3.html
[...]

In this last step the �rst problem appears. Supposing the �rst section have only 16
pages, a normal procedure is to increase the counter and to download the "../1/index-
17.html" page, facing an error. So, it is easy to change section and start the download
again. The problem is during the download of a page out of range (for example the num-
ber 17), the server returns every time the last page of the section (in this example the
number 16) and the script could not understand when he has to change section. To �x
this, the script computes, for a new page, the MD5 and compares the value with the last
page downloaded, so if the hashing is the same it has to change section, otherwise keeps
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to increment the counter.

Each script implemented keeps a log�le for the possible errors and this is not rare during
a long downloading as all the brands or all the Flickr images. For that the scripts after
the parsing of all the sections, checks the log�le and try to �x all the entry automatically.

3.3 Flickr Collection

Source http://www.�ickr.com/group/famousbrands/
Server media1.barcelona.corp.yahoo.com
Number of Images 15881
Size 2.0G
Image Resolution 500 x 400 (most common) @ JPG
SURF Vectors 440 (average)

Table 3.2. Retrieved Flickr Collection

Comparing the table 3.2 with the 3.1, is possible to see some di�erences. The most
interesting are the average number of vectors extracted, in this case is more than 4 time
bigger. This happen not only for the resolution much large of these images, but also for
the structure of a photo, usually much more complex than a logo.

Working with a Flickr database involve some advantage, to obtain the photos is possible
to use a method much more elegant: the Flickr API3, simply a set of callable methods. We
exploit them in the python script to download all the photos and the relative information,
and in Java to acquire automatically the candidates of an input image. To used that API
is necessary have an API key, we used a Non-Commercial one according with the Flickr
rules. To understand better the use of Flickr API there are several examples below:

http://api.flickr.com/services/rest/?
api_key=fcc535b428d18e3df66711ff87dcadd9
&method=flickr.groups.pools.getPhotos
&group_id=75819424@N00

Not all the query requires the API key, but usually the structure it is this. The method
de�nes which function call, in this case it retrieve an xml �le with all the photos include
in the group. The group_id is a parameter required by this speci�c method. An example
of output is that:

<rsp stat="ok">
<photos page="1" pages="201" perpage="100" total="20042">

3http://www.�ickr.com/services/api/
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<photo id="4341371478" owner="29257248@N02" secret="a6e2a802a4"
server="4024" farm="5" title="Adminsoft logo result"
ispublic="1" ownername="Franz Vanek" dateadded="1265651497"/>
<photo id="4240922072" owner="32156469@N06" secret="62ccb54943"
server="4011" farm="5" title="GUINNESS 2010" ispublic="1"
ownername="SIMONE RAVERA PHOTOÂ©" dateadded="1265639112"/>
<photo id="4340851274" owner="88414926@N00" secret="f999f979ab"

server="4027" farm="5" title="Diet Mt Dew Ultra Violet"
ispublic="1" ownername="Paxton Holley" dateadded="1265638597"/>

</photos>
</rsp>

The XML is an optimal way to work, there are plug-ins to support it in every pro-
gramming language. We use it in Python, with the packages xml.dom.minidom and
xml.parsers.expat.
In spite of the query result is a good bunch of information, is missing the URL of the
images, and so it is necessary to perform another query. The only information required to
identify the image is the id. The command to �nd the information, for example for the
�rst photo retrieved, is the follow:

http://api.flickr.com/services/rest/?
api_key=fcc535b428d18e3df66711ff87dcadd9
&method=flickr.photos.getInfo
&photo_id=4328326553

And in this case the output will be:

<rsp stat="ok">
<photo id="4328326553" secret="7d4daaba0c" server="2789" farm="3"
dateuploaded="1265239245" license="0" originalsecret="f98be762b5"
originalformat="jpg" views="11" media="photo">
<owner nsid="99117185@N00" username="mbell1975"/>
<title>Leinenkugel's Honey Weiss Beer</title>
<visibility ispublic="1" isfriend="0" isfamily="0"/>
<dates posted="1265239245" taken="2010-01-30 16:42:31"
lastupdate="1265240167"/>
<comments>0</comments>
<tags>
<tag id="3505925-4328326553-1049767" author="99117185@N00"
machine_tag="0">leinenkugels</tag>
<tag id="3505925-4328326553-13398" author="99117185@N00"
raw="Honey" machine_tag="0">honey</tag>

</tags>
<location latitude="38.843785" longitude="-77.31122"

accuracy="12" place_id="GgZmW42bAplSQFyy" woeid="2355693">
<neighbourhood place_id="GgZmW42bApl">Ardmore</neighbourhood>
<locality place_id="zzcnEYmbBZz15XaJ">Fairfax</locality>
<county place_id="aYS88JuYA5n1ZPU7Hg">Fairfax City</county>
<region place_id="22b1cJWbApjzghQy">Virginia</region>
<country place_id="4KO02SibApitvSBieQ">United States</country>
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</location>
<urls>
<url type="photopage">
http://www.flickr.com/photos/mbell1975/4328326553/
</url>

</urls>
</photo>

</rsp>

This XML contains all the information about the photo, branched in di�erent sub-
groups:

� speci�c information tighly connected with the photo, as the format, date of upload,
number of view, identi�cation codes and so on..

� comments, whether there are

� tags, with information of the author and id

� geographic location with city, country, region and coordinate position whenever spec-
i�ed.

� urls, link of the photo page.. (if there are more than one, they will be appear here)

This two methods calls give us all the information needed, so now it is possible download
and store all the data in the database.

3.4 Test and Train Set

The idea is to use imaged in Flickr famous brands collection and than detect which logos
appear in those imagesWe are looking for two sets of images, one for training and the other
for testing. For Train Set we mean a set of 3.2K images as random bunch of famousbrands,
and for Test Set, 1K images with some additional requirements:

1. intersection on both sets should be empty

2. it must be ensured that every image of the test set contains (at least) one logo in the
brands collection.

3. if possible, none oh the tags appearing in the train set should appear in the test set.
This property will be checked examining the images' tags.

To know what an image contains, it's important analyze the tags, so we create two
more table in the database, famousbrands_tags and famousbrands_train_tags for this
scope. All the tags from Flickr images, were stored as a entry of the table, we parsed that
value and split all the tags as singular word. The tables have the same structure, as follow:
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[SQL command for build the famousbrands_tags table]
create table famousbrands_tags
{
flickrid integer auto_increment,
tag varchar(255) not null,
primary key( flickrid, tag )

}

This is thought for a very easy search by tag, to �nd it immediately without parse
every time the big �eld "tags" of the main table. In fact, to respect to the �rst and the
third point is necessary, after the creation of famousbrands_train and the relative _tags
tables, to check not only the �ickrid but every tags; in this way we can obtain two sets with
images distinct each other and with distinct brands inside. This point is very important
for our future tests.

To �ll the Test table we use the following sql command:

[SQL command to fill in the test set]
insert into famousbrands_test select * from famousbrands
where photoid not in (
select distinct photoid from famousbrands_tags where tag in (
select tag from famousbrands_train_tags
where tag <> 'logo' and tag <> 'sign' and tag <> 'brand'
and tag <> ''))
order by rand() limit 1000;

In the previous command there is a kind of �lter to exclude some commons tags like
logo, sign and brand and for an empty string, maybe obtained during the parsing of the
original tags. This tags are so many popular, than it's impossible to extract 1K images
from 15K of famousbrands with all the tags di�erents without �lter them.
Another important operation to apply, is on the brands table. The logos are uploaded on
the website, our resource, from all the world, so it is usual to encounter characters from
di�erent character-encoding scheme, and some time not readable. To resolve this problem
you have to normalize all the brands name, obtaining a comparable string useful for a
search.

parlare del problema di gestire e ricercare in modo immediato questi loghi: interfaccia
php



Chapter 4

Features Extraction

To describe what is the meaning of Feature Extraction it is better digress a little bit. The
goal of this project and, more in general, of a video retrieval works, is to detect something of
unique, or more descriptive, in an image and than use this kind of information to compare
it with other images. To do this it is necessary a comparison measure to reduce the number
of variables under consideration. These operations require high computational cost when
dealing with large data set, so the reducing dimensionality can e�ectively cut this cost.
This process is called indeed Dimension Reduction and provides two di�erent solutions:

1. Feature Selection, where are selected subset of the original features without transfor-
mation

2. Feature Extraction, where in function of some transformation the original features
are replaced with some new ones. Here you have to consider the computational cost
of the transformation.

This project is focused to the second point, and the idea is to extract the most rele-
vant information from the input data, discarding redundancies and irrelevances. However,
working with a large data set provides to do some operation more, as collection segmen-
tation to catch a sub-selection of data as cluster, but all of these techniques are following
the features extractor.
A di�erent point of view to explain what does it means:

Feature-extracting question:[32]
If we are allowed to use only one numerical feature to describe each data object,
what should this feature be?

There are many ways to extract features[27] more or less optimize for di�erent goals.
Some are based on the Edges or on the Corners, other on the Curvature or on the Shapes
as Hough Transform, but we are focusing on the Scale-invariant feature transform[14] and
on the Speeded-Up Robust Features [16].
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4.1 SIFT vs SURF

In this section, there is a brief introduction to SIFT and SURF Descriptors, and in the
end a short comparison of them with advantages and disadvantages related to this project.
However to understand better the steps and the procedures of each method, we recommend
to read the concerned references.[14][16]

Moreover we'll introduce some image �lters with tests made and results obtained using
the SURF Descriptors. There will be some examples and �gures to understand better the
proves.

In the end there is a description of all the steps needed to perform the matching and,
of course, conclusions and observations about it.

4.1.1 SIFT

SIFT, acronym of Scale-invariant feature transform, is one of the most famous algorithm
to detect and describe the local features in an image, invented by David Lowe in 1999[14].
It is a method for extracting distinctive invariant features from images that can be used
to perform reliable matching between di�erent view of an object or scene.

This feature descriptor maintains a good fame for its properties, because it is invari-
ants to scaling, translation, rotation, a�ne transformation and partially to illumination
changes. The goal of these techniques is to convert an image in a set of vectors, and these
vectors have the characteristic to describe enough the image. For us, it will be possible
work directly to the vectors and make all the operations with them.

A typical image of size 500x500 pixels will give rise of to about 2000 stable features, and
the quantity of features is particularly important for object recognition. For image match-
ing and recognition, Lowe used the Euclidean distance to compare the vectors of the image
with all the other stored in the database. The large number of vectors identi�ed, could
become a big problem during the comparison and matching, furthermore a SIFT descrip-
tor is structured by 128 dimensions or, in other words, 128 numbers, twice of SURF vector.

The good of the SIFT is the great number of features that can extract, but the problem
is the speed for all the computational steps. Many researches have been done in literature
about a comparison of the di�erent Features Extraction Algorithms[26] and in each of them
there are not a really winner. Each algorithm has good and bad things, for this project the
main reason to choose the SURF Descriptor was the fast computation, since the quality of
this descriptor is very similar to SIFT.
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4.1.2 SURF

SURF, Speeded-Up robust Features, is another image detector and descriptor inspired
by SIFT, was �rst presented by Herbert Bay in the ECCV 2006 conference in Graz,
Austria[15]. SURF approximates or even outperforms previously proposed schemes with
respect to repeatability, distinctiveness, and robustness, yet can be computed and com-
pared much faster. This is achieved by

� Relying on integral images for image convolutions

� Building on the strengths of the leading existing detectors and descriptors (using an
Hessian matrix-based measure for the detector, and a distribution-based descriptor)

� Simplifying this methods to the essential

In this project it is used the OpenSURF instead SURF, it is an open source implemen-
tation (C++, Linux) with all the documentation and references necessaries, because the
original version is still to be closed source.

The dimension of the descriptor has a direct impact to the storing and to the time
taken of each comparison. The SIFT descriptor uses 128 dimensions, whereas the SURF
uses only 64 dimensions. However, lower dimensional feature vectors are in general less
distinctive than their high-dimensional counterparts.

Explain works and steps of the SURF Descriptors is not the job of this document, for
that we refer to the bibliography, but we can discuss some points of comparison between
the two descriptors[25]. Both SIFT and SURF belong to the family of scale invariant fea-
ture detectors so, they trying to analyze the input image at di�erent resolutions in order
to repeatably �nd characteristic independently of their actual size. To this end, they use
multiscale detection operation called scale space representation of an image. In a second
step detected features are assigned a rotation invariant-descriptor computed from the sur-
rounding pixel neighborhood.

SURF builds on the concepts of SIRF but introduces more radical approximations in
order to speed up the detection process. Due to the use of integral images the complexity
of SURF is greatly reduced, so SURF often achieves superior performance than its pre-
decessor. Another di�erent is that SURF uses the determinant of the Hessian for feature
detection in scale space instead of the Laplacian operator. Nevertheless for the goal of this
work, the decision to use the SURF instead the SIFT is due to the greater computational
speed without signi�cant loss of information.

For the brands collection, discussed in the the Chapter 4, all the images of the logos was
saved in GIF format from as are stored in the website, but the OpenSURF code required
an input image in JPG. For that it was necessary to convert all the brands. Below there
are some example of SURF detected.
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Name parmalogo yahoo juventus NYyahoo
Type logo logo photo photo
Computational Time 0.114s 0.083s 0.487s 0.381s
Number Of Vectors 121 72 567 451
Resolution 200 x 200 200 x 200 500 x 495 500 x 333

Table 4.1. Example of SURF computations information

In the table 4.1 there are a few examples to see the computational time of SURF
Descriptor for logos and images. In the �gure 4.1 and 4.2 there are the images with plotted
surfs.

Figure 4.1. Examples of SURF computations images

Code Updates

To make the code more suitable for the needs of this project, it was necessary to make
some change to the code. First of all the type of input, instead support only one image
per time, an option has been added to read each values from standard input and compute
all the SURF vectors immediately writing on the standard output. A lot of scripts in this
project work directly with standard input and output, because it is much more convenient
to manage input and output data and moreover it is possible to work in a concatenated way.



4.1 SIFT vs SURF 15

Figure 4.2. Examples of SURF computations images

However the most interesting change concerns the introduction of a bounding box. The
full name is Logo Bounding Box and it has to describe all the rectangular box where is
contained the logo. In the OpenSURF code, given all detected SURF points, the maximum
and the minimum values are kept, and this data is added to the descriptor information.
So far, a vector looks like:

float x, y;

float bboxX, bboxY, bboxWidth, bboxHeight;

float scale;

float orientation;

float descriptor[ 64 ];

Figure 4.3. An example of Bounding Box

All the code in this project support the bounding box, see �gure 4.3, to be more precise,
there is the possibility to work with or without it, depends of the kind of test. One of the
thing that can help to the detection of the logo, is in fact the origin recognition. The origin
is the �rst point of the logo, indicates by the bounding box as origin. It is used during the
matching of a brand and an image, trying to identify the origin of the logo by the matched
points of the other image. This topic is discuss with more details in the Section 4.2.3.
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4.2 Matching Points

Once obtained the features descriptors of an input image, using Open SURF in our case, you
must �nd a way to compare them with all the ones in the brands collection. With the SURF,
a descriptor is constituted with 64 dimensions, to be more precise by 64 �oating point
values. To compare vectors as these, there are di�erent ways, we made some comparison
between: Euclidean Distance, Correlation and Cosine Similarity.

The Euclidean Distance is based on a repetition of the Pythagorean theorem is one of
the most commons, used by Lowe with his SIFT. En example below, of this computation:

Given two points u = (x1, y1, z1) and v = (x2, y2, z2)
the Euclidian Distance is

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

The second method tested is the Correlation, it's commonly used in Text Mining to
compare two vectors of n dimensions. It is obtained by dividing the covariance of the two
variables by the product of their standard deviations. The formula is this:

cos(θ) = uv
‖u‖‖v‖

The last one is the Cosine Similarity, this measures the cosine of the angle between the
two vectors.

Px,y = cov(x,y)
σxσy

4.2.1 Matching Technique Comparison

Write here how we compare the matching techniques: Correlation, Cosine Similarity and
Euclidean Distance.
With Graphs and numerical values.

4.2.2 Correlation

Given two input vectors, computing the correlation, the output will be a value that rep-
resents their similarity. This value has a range from -1 to 1, where -1 indicates that the
vectors are opposite, and 1 that the vectors are the same. All the values in the the middle
can be valuated by the user, but in this project we are looking for the similarity, so it is
necessary to consider only the positive values greater than a certain threshold. To make
sure this comparison method is working well, in our case, we tested it in many situations,
with a �nal manually evaluation. Have been implemented a few applications to do this,
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described in more details in the Section ??.

The idea is that the trend followed by the values of two di�erent SURF points is similar
if the points correspond to the same background shape. See examples of matching and non
matching points in the following images, which show two matching points with a correlation
threshold of 0.985:

Figure 4.4. Correlation with threshold of 0.985

Figure 4.5. Correlation with threshold of 0.95

Once computed all the SURF points of both images, they are compared using the
Correlation and are discards all the matching less than a certain threshold. We made
di�erent tests to de�ne the threshold, of course elevated values are more discriminant but
more precise. In the �gures 4.4 and 4.5 there are a couple of examples with two di�erent
elevated thresholds.

4.2.3 Bounding Box

In this section we'll discuss with more details the Bounding Box. The idea is, once detected
the correct logo and the logo position in the image, to select the logo region by plotting
its bounding box. We try to identify the origin point through a voting: from each feature
extracted by SURF Descriptor.

With all these information, the proposed method will be:

� Given a Target and a Source image, see how many points are highly correlated
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� For each highly correlated pair of points, we will try to transpose the origin of the
Bounding Box of one point in the other image.

� This procedure will give us a guessed bounding box, that will tell where the logo
appers in the Target image.

Figure 4.6. Transposed bounding box of the matching points (Threshold 0.95) without BBox
plotted

In the �gures 4.6 and 4.7 there are a selection of candidates origins from all the matched
points. As it is possible to see, not all of those are correct, but with a ranking of the
proposed points we can select the best candidate as origin. An implementation should be
merge the value of the correlation in this ranking, in other words, use a kind of weight-
ranking by correlation to give more or less weight to each vote. The matched points with
a big value of correlation are more creditable than the others because the vectors have to
be more close.

Figure 4.7. Transposed bounding box of the matching points (Threshold 0.985 and 0.95) with
voting of all the candidates features.

In the code of OpenSURF, during the computation of the descriptors, we compute and
store more information4.8. As we just said, the code compute the bounding box simply
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considering the extracted points with smallest and biggest value of x and y so it can �nd
the boundaries. Of course the box could not cover the entire logo shape, but it is what
SURF can detect and it is everything we need.

Figure 4.8. Structure of SURF Vectors, the colored parts are added, for this project, to store
more information.

Each logo SURF vector contains the origin and the dimension of the bounding box, so,
once obtain the candidates logos from the input image, it is possible to start a voting for
the origin. In this case, keeping the vectors that vote in a common area we can �lter all
the other, discarding the false positive candidates points.

4.3 Image Filtering

The following section presents ways to improve the matching ratio by applying transfor-
mations both to target and source images in order to isolate matching points and increase
correlation. This matter appeared during the matching tests, there were a few images with
the same logo in more than one positions, but with di�erent backgrounds, like the �gure
4.9. After a comparison with the correct brand, the matching results were very di�erent.

Figure 4.9. The same logo appears twice but with inverted background) without BBox plotted

The following examples concern only the correlation matching, without any classi�ca-
tion, �ltering or segmentation. So, all the surf vectors from the input image were compared
with all the vectors of the logos, and are selected the vectors with the bigger match.
The di�erent value of the threshold is important to understand what is discarded and what
is not, as the �g4.10. In others tests there were applied some image �lter to check the per-
formance change, in the �g4.11 show the results with the image converted in gray-scale, in
the �g4.12 was applied the blur �lter, too.
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Figure 4.10. Correlation with threshold equal to 0.80 (with 0.90 there was not common points,
with 0.85 not so many)

Figure 4.11. Correlation with threshold equal to 0.80 (with 0.90 there was not common points,
with 0.85 not so many)

4.4 Problems and Conclusions

This point of the project was very useful to �gure out how the SURF Vectors works, and
how it is possible to obtain the better performance without loose information.
We have got di�erent kind of problem, and some �lter clari�ed the limit to use Correlation
with the SURF: applying a invert �lter to the image, in other words, inverting all the value
(in a b/n image) the points extracted before the �lter are totally di�erent.

In the image 4.13 this case is very clear: there are two possible matching of the logo,
one in the top of the image with dark color and blank background, and the other in the
bottom with blank color on dark background. The �rst one is detected successfully: so the
correlation �nds similar the vectors of the logo and of that part of image, but the second
one does not have a single common point. Applying the �lter, explained below, on the
image we'll �nd an inverted situation: the �rst area does not have common points and the
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Figure 4.12. Correlation with threshold equal to 0.80 (with 0.90 there was not common points,
with 0.85 not so many)

Figure 4.13. Correlation with the b/n image: it is detect only the logos located on the top and
the other does not have common points.

second one is well detected.

If the matching between the interest points of the image and the logos points does not have
an high value of correlation, it means that the vectors are not so similar. So or we could
change the metric technique or we could change the descriptor algorithm. We tried both
the solutions, but with the Euclidean Distance or using the SIFT Descriptor the problem
are the same. Another possible solution is to apply the invert �lter to all the logos collec-
tion to discard the possibility to loose information in this way, but the collection increases
twofold and the computation times as well.

However these are tests to understand with what we are working, the solutions of these
problems are not the goal of these project but it's important to know the limits of the used
algorithms and techniques.
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Figure 4.14. Correlation with the same image but with inverted values: the logo detected is
changed.

Matching vector-by-vector the source image and the logos, in the pairs of points with
an high value of correlation there are the correct ones, but it is not possible compare
with correlation (or Euclidean distance) all the vectors. So the main conclusion is the
requirement to process the surf vectors before do the direct matching, or, to try to �nd
a good way to segment all the logos surf in similarity groups. In this case we have to
compare not each extracted vector of the input image to all the others, but only with the
representative vector of each group, because if all the points in the same group are similar
it is possible de�ne a representative one that it is similar with all the other. We can obtain
better performance in computational time and in results quality.
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Collection Segmentation

The Collection Segmentation is a key point of this project, because, at this step, all the
logos SURF descriptors are computed, and now we have a huge number of vectors. Ob-
viously we can't compare each point from the input image to all the logos points, the
computation time is exaggerate and more, using only one matching technique should be a
lot of false positive. For these reasons it is necessary to segment all the logos SURF vectors
and classi�ed them by some common feature.

In this projects were tested a lot of di�erent techniques for the segmentation. The main
idea is to split all the vectors in di�erent groups, and obtain for each group a representative
vector. So, to compute the candidates of an image, it only necessary compare its SURF
points with these representative ones.

What is a representative vector? Think about the current goal, it is to reduce the num-
ber of comparison between the points extracted from the input image and all the stored
logos points. To do this we segment the logos points collection splitting the not-similar
vectors in the di�erent groups, so each group contains only points similar to each other.
Computing a vector that represents a group it means to obtain a vector that is similar to
all the other in that group. With this one we reduce the number of comparison for each
image point to the number of groups. How to create the representative vectors and how
many groups generate depends of the used techniques.

The �rst technique discuss in this chapter it's the Balanced Decision Tree where, for
each level of the tree and in each of the two nodes, it will be selected only one dimension of
all the 64 of the SURF vector, and by this value the descriptors are split. Another method
is to use a K-Means Cluster, where all the closest points are grouped and one point for
each group is computed as centroid to represent all the other. Other ways should be the
Random Vectors or the Semi Random Vectors. For these two methods a set of vectors are
created with the same structure of the SURF one, but in a random and in a semi-random
mode.
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Once segmented all the vectors, we obtain a model that contains all the representative
vectors used to segment the collection and a classi�ed �le that contains simply all the logos
vectors classi�ed. In all the classi�ed vectors there is one value more in the vectors that
contain the label (or signature) of the relative group. To compute the candidates of an
image, we need this model and the relative logos classi�ed.

Each vector of the input image should be matched to each representative vectors and
the best match is selected. This selection return the label of the group with the best
similarity and to obtain immediately all the logos points inside this group, it is necessary
a Random Access to the classi�ed �le. To do this it will be created an index to store for
each label: the �le location, the starting byte and the length of the data included. We'll
see in details this step in the next chapter.

5.1 Variance-Balanced Decision Tree

The object is to create a balanced decision tree, where given a set of (SURF) interest
points the decision tree produces a balanced set of leaves. Each leave node will contain
approximately the same number of interest points.

The tree below 5.1 illustrates how a set of interest points is split in two equal subset,
based on the median value that can be computed for a single dimension that is selected
from the SURF feature vector.

Figure 5.1. In each node the collection is split in two equal subset. With SURF[45] it means
that each vector during the segmentation has to check the value in the dimension 45, and if it is
bigger go to the right node otherwise to the left one.

How to select a dimension at a particular point in the tree? There are several solutions:

1. At random: the algorithm selects at random a dimension, Eg a dimension D = [1..64].

2. Max variance: the algorithm computes the variance of the feature values at each of
the 64 dimensions, and produces a ranked list of dimensions D where the dimensions
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are ordered in descending variance. When constructing the tree, at depth i, the i−th
element of the list of dimensions D is selected. Eg. nodes 2 and 4, corresponding to
depth 2 would both use the same dimension for splitting the data, but most likely use
a di�erent threshold. The advantage of this approach would be that the decision to
split a set of interest points is based on those dimensions that are most discriminating.

3. Local max variance: In this variant, the dimension for splitting is selected based on
the maximum variance, which is re-computed for every node, with the corresponding
set of key-points.

The current proposal is to go with the third variant: the advantage would be that in
each node the decision to split is based on the dimension that has the biggest value of
variance at that point, in other word, the most discriminating dimension for that level of
the tree.

5.1.1 Implementation

Given the SURF vectors for all logos to be structured in the tree, the following steps are
needed:

1. Compute a vector with the same dimensionality as the SURF vectors, with the Vari-
ance of each dimensionality. To do this, all the collection should be traversed.

2. Take the dimension with maximum variance and select it as a decision dimensionality.

3. Calculate the median for the selected dimensionality and split the collection in two
parts, taking the median as a threshold.

So, with the previous steps we obtain a pair of values: the selected dimensionality and
the relative value where check and split the collection. For each level of tree these steps
are carry out to obtain for each node the pair of values. When a surf vector is processed is
required to keep a signature of the chooses in each steps, the common way to do this is to
sign with a 0 the left choise and with the 1 the right one. So, for each level there will be
a binary value, and in the end of the tree there will be the signature or leafID. Look the
�gure 5.2 where the dimensionality choise procedure is illustrate in steps.

Following there will be the pseudo-code to explain the code.

function createDecision ( Collection c, DecisionTreeNode t )

Vector v = calculateVariances( c );

double max_variance_index = getMaxIndex( v );

double median = getMedian( c, max_variance_index );

t->dimension = max_variance_index;

t->median = median;
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Figure 5.2. Tree creation: compute the variance for each dimension of the collection and select
the dimension with the bigger value. Once obtained this new vector, sort it in ascending mode
and take the value in the middle: this is the median. This value it will be use to split the collection
in the current node.

t->left = new DecisionTreeNode();

t->right = new DecisionTreeNode();

<c1, c2> = splitCollection( c, max_variance_index, median );

createDecision( c1, t->left );

createDecision( c2, t->right );

Once created the tree, it should be serialized and stored as a model1. This is another
convenience to using a tree to store the information. A tree is easily store as an array
preserving the random access to a node: if you are looking for the children of the node in
position K, you simply have to keep the values in the positions 2 ∗K and 2 ∗K +1 for the
left and the right child. In the �gure 5.3

Figure 5.3. (Model Tree) It's a two-dimensional vector with a pair of value for each node: the
dimension index and the dimension value to split.

The height of the tree set the length of the signature (or leafID), than in function of
the collection it is possible to segment it with di�erent distribution. Our goal is not to do

1http://webdocs.cs.ualb erta.ca/ holte/T26/tree-as-array.html
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an hard segmentation, but to keep a large number of points in each leaf and in succession
to do a ranking of these vectors. So we are sure to not loose information: it is better to
keep the false positive, and to discard them later in the ranking step.

5.1.2 Experiments

The experiments describe in the following sub-section are built for the project and not only
for this thesis, so the following consideration is taken from the documentation done by the
entire working team. The initial tree was create with a set of training images, and with
the properties shown in Table 5.1.

Property Value
Number of training images 25000
Largest dimension of the image 500px
Number of SURF descriptors per image 419
Number of SURF descriptors extracted >10M, of which 2.5M used as training data
Size of the decision tree model 215− 1 = 32767 tuples (dimension, median)

Table 5.1. These are the tree implemented by a set of training images.

To de�ne the height of the tree we made the following hypothesis :
The stability of the tree at a given depth depends on the number of SURF features that
have been used to train the decision tree. When enough features are used, the di�erence
between two models will be small.

To test this hypothesis we built a set of pairs of decision trees using the same number
of features, but the features should come from di�erent set of images. The "di�erent" be-
tween a pair of decision trees will decrease when the number of features used will increase.
We're looking for the point where the δ di�erence between two pairs of decision trees comes
below a prede�ned threshold, with the number of features used being doubled at every step.
We need a good metric to measure the di�erence between two variance-balanced decision
trees.
Intuition: As the construction of the tree is based on variance, the dimensions selected at
the higher level (low depth) should stay more stable than the dimensions selected deeper
in the tree.

Experimental Design

The stability of a Variance-Balanced Decision Tree depends on two parameters:

1. The number of feature vector used to train the decision tree
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2. The depth of the decision tree

For this experiment, we have retrieve 25000 images at random from �ickr, the data are
shown in the table 5.1.

We estimate the stability of the decision trees by repeatedly doing pairwise similarity
comparisons. The Level Stability Detection metric (LSD) is adopted to measure how
stable the decisions are at each node in the tree. The LSD metric is explained in detail
below. For the experiment we are interested in comparing the stability of the Variance-
Balanced Decision Trees given a variable number of feature vectors to train with, but also
to investigate the stability at various depths in the tree. For the evaluation we'll compare
the stability at depths 5, 10, and 15.

At depth 15, we'll have a tree with 32K leave nodes. As we want to repeatedly measure
the stability of the tree we have split the 10M SURF descriptors ( 400 ∗ 25K images) in
4 equals sets, each containing 2.5M feature vectors. This allows us to do a 6-fold pairwise
comparison of the stability. We selected at random X feature vectors from a set to con-
struct a tree, with X ranging from 200K − 2M feature vectors. In addition, we trained a
decision tree for each set, using all 2.5M feature vectors.

Level Stability Detection metric

The intuitions is that the stable trees will make similar decisions at the same node in a
tree. LSD estimates the stability of two trees, by inspecting the agreement in selected
dimensions at each level in the tree. The LSD score ranges from [0 − level] where two
similar trees will have a score equal to the number of the levels (depth of the tree).

To be able to compare the stability of trees across levels, we can normalize the LSD
(nLSD) scores through dividing the score by the number of levels.

5.2 Random Vectors

This techniques provides to split the input vectors computing a signature using a de�ned
number of random vectors. The idea is to split the collection by random vectors that,
generated in random mode, could segment it in a distribute mode. These are structured as
the SURF ones, but the values in each dimension are: �rst generated in a randomly way
with �oating values in a range -1 to 1, second normalized.

This method works quite di�erent from the other, to be more precise each random
vectors is not use directly to split, but there will be compute a signature after a comparison
of all the random vectors. Let's see the following pseudo-code:
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ImageSURF = read( input_image.surf )

RandomVectors = read( randomVectors.16.class )

signature = ""

for ( current_surf in ImageSURF ) {

for ( current_rv in RandomVectors ) {

correlation = pearsonCorrelation( current_surf, current_rv )

if ( correlation > 0 )

signature.append( "1" )

else

signature.append( "0" )

}

store.add( current_surf, signature )

}

How is possible to see, each surf descriptor of the image is compared with all the ran-
dom vectors, and for each comparison it's assign a "1" or a "0". So, if we use 8 random
vectors, we obtain a signature of length 8, and 28 possibility. We tested di�erent length
of signature: 8 (256 possibility), 12 (4K), 15 (32K), 16 (65K), 32 (232), 64 (264) and 128
(2128). Obviously with 64 and 128 it will be a huge number of vectors, and the it is outside
of the idea of segmentation because the SURF vectors will be not split so well.

So, once computed the random vectors we use them as model, and now we have to
segment the logos points collection as it's shown in 5.4 to obtain the classi�ed logos. Apply
the algorithm discuss before, all the SURFs obtain a relative signature, that is the label of
this group, and now you have to segment by signature all the vectors. Furthemore this is
a large �le with huge dimension ( 12G), and for this reason it necessary to build an index
that we can store it entirely in memory and we can access directly only to the required
data of the classi�ed �le. To get the logos candidates we make the following steps:

� Get the input image and compute the surf vectors

� For each vector, compute the relative signature

Figure 5.4. Random vectors segmentation procedure.
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� For each signature, retrieve all the points candidates

� Rank with these points (retrieve the image with more point matched, ..)

5.2.1 Semi Random Vectors

The Semi Random Vectors method works as the Random Vectors, the only di�erence it's
how to create them. In this case are not so random: the dimensions of the descriptors are
analyzed, and split in three balanced subgroup. The idea is similar to the Decision Binary
Tree, but the values are split in a much more simply way.

Figure 5.5. Semi random vectors creation.

Let's see the image 5.5. For each dimension it copy the values in a new array and sort
it to have all the avlues ina descending order. In the end this array is split in three equal
parts, storing the two values used for the split. So, for each dimension, we keep these
values and we use them to create the semi-randomvectors.

5.2.2 Signatures Distribution

For the Random and Semi-Random Vectors the distribution is not balanced as for the
Variance-Balanced Decision Tree, so it is possible to �nd some picks that is some signa-
ture very commons that represent a lot of points. These points are taken as noise and a
signature with a huge number of vectors is not used in the ranking.

To tests the Random Vectors to de�ne a good length of the signature (analogous for
Semi-Random) we create di�erent number of vectors. In this section we discuss the distri-
bution of signature with lengths 15, 32, 50 and 64. The classi�ed collection is the full one,
called brands.surf with 175K of logos and about 17M of surf points. In the �gure 5.6 there
are the distribution graphs in function of 17.5 millions of vectors. The goal is to have a
constants values, it should be describe as an horizontal line in the graph. Unfortunately it
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Figure 5.6. These graphs explain the distribution of the signatures after the classi�cation of
brands.surf. The �rst one describes about the random vectors with length 15, the other of lengths:
32, 50 and 64. It's possible to see some commons picks in all the graphs.

is not so plane and there are some picks: this means that there are some points very com-
mon with the same signature. All these ones are discarded during the candidates selection.

In the table 5.2 there is a summary of the four di�erent Random Vectors here reported.
In this table we toke in exam the RV20 and RV40, because they are more similar to the
version 15 and 32 and the comparison is more interesting.

Number of RVs RV15 RV20 RV32 RV40

# Total sgn 32768 1048576 4294967296 1099511627776

# Empty sgn 23224 935263 4293990258 1099510699539

# Not-Empty sgn 9544 113313 977038 928237

(# Empty sgn)/Total 0.708740 0.891936 0.999773 0.999999

(# Not-Empty sgn)/Total 0.291260 0.108064 0.000227 0.000001

Table 5.2. This table contains information for each di�erent number of Random Vectors: number
of total signatures, empty and used ones and proportions of e�ciency.

The distribution signature/vectors is not plane as the expectation, but it is interesting
see how much it changes when increase the number of RV. For the RV15 there are 32K of



32 Collection Segmentation

total signatures and segmenting the brands.surf with 17M of vectors there are used only
9K with more then 70% empties leaves. Using the RV20 the are more than ten times
of vectors used, but in proportion with the total number of vectors there are even 89%
empties signatures. With the RV32 ad RV40 the situation is worst, indeed getting the
signatures from an input image, should be the possibility to �nd signature without any
brands vectors, so empty ones not useful for retrieve the candidates.

Analyzing these values look clear to use a little number of vectors: RV15 is well. We
make the same test with RV14 with similar results, and �nally we did the experiments with
these two sets of vectors. During the experiments, specially for the Random Vectors (not
for the Semi-Random) appears necessary to generate a set of RV15 so to test the random
factor and to see if the results are stable or not. In Section ?? there will be more details.

5.3 Other Techniques

To segment a large collection there are many ways, this chapter toke in exam the Variance-
Balanced Decision Tree and the (Semi-)Random Vectors techniques, but during this work
there were implemented and tested more methods. All the techniques have the aim to
segment the large data set composed of logos vectors, so the possibility to do this step are
many, we had only analyze some of them to choose the good one for our project.
The other techniques are K-Means Clustering, a very common method to split huge col-
lection, and Spline, where we compare the vectors shown as functions. However there is a
brief discuss about the K-Means only, and not in-depth because it was not developed by
myself, but I think it's important to give a general knowledge about it to have another
comparison as segmentation technique.

5.3.1 K-Means Clustering

K-Means Clustering is a method of cluster analysis, it is very popular for the partition
problem where given a set of n data points the aim is to split the data collection in k
groups, �nding k points centers. In our situation it had to partition the brands collection
in k groups of similarity, it means �nd k vectors, called centers or centroids, that can min-
imize the mean squared distance from each data vector to its nearest center. To compute
these centers the method makes a de�ne number of iterations, where the self centroids
could change position to obtain a better distribution of the points, so at each loop the
groups are more balanced.

The procedure is explain in the �gure 5.7 where given the large collection of SURF
vectors, it �nd the centroids after a number of iteration, where it compares each times the
distances from each vectors to the centroids. Once computed the centroids vectors, they
become the kmeans model, that is a simply list of vectors as a signature or a leafID for
a Decision Tree. In this case the procedure is similar to the Random Vectors, instead of
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Figure 5.7. KMeans segmentation procedure: acquiring of SURF vectors from the collection,
detecting the centroids and indexing the centers.

through the tree to obtain the leafID, the SURF vectors has only to compute its distance
of all the centroids and select the most close.

To compute the centers, we used this time the Flickr Collection, to train the model with
more points, not only relative to a logo. This Flickr Collection is constitute with a million
of random Flickr image, so it doesn't care if they contain or not logos, because they are
choose randomly. Once computed the centroids, the brands.surf collection is segmented,
so for each SURF vector there is a corresponding centroid. As the other techniques, to
have a direct access to each segment (centroid group) we made an index to the centers and
to all the relative logos vectors.
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Chapter 6

Classi�cation and Ranking

During the Segmentation steps, it was created a model and with this it was segmented all
the logos collection. After this, we obtain the classes, or groups, that contain the logos split
by similarity. This mean that in each group there are the SURF vectors of the logos that
are similar for the comparison techniques used in the segmentation. The next step concern
about the input image: we have to extract from it all the SURF vectors, and de�ne which
is the best group for each of them. With best group we intend the group where there are
the elements more similar to the current SURF vector.

Remember that: with segmentation we means to split a collection in unde�ned segments
by some commons properties, instead with classi�cation we mean to split a collection in
classes yet built. For each image vector we have to obtain a class of logos vectors, so we
have to classify all the SURF image vectors.

Once obtain these classes, we have a large list of logos points that are similar to the
image ones for some properties: these vectors are called vectors candidates. The next ad
�nal step is to work on this list, in other words, to apply some ranking to these candidates
to understand which are the points more similar and, in the end, which are the images
with more similar commons points.

This chapter describes which are the steps to the classi�cation for each techniques sow
in the segmentation, and what it's mean with ranking of the candidates, how it work and
which are the new techniques.

6.1 Classi�cation Methodology

Classify, as we said, means to de�ne which is the best group o section for an object. In
this case, which is the best group or cluster for an input vector. Ho to do this? Depends
about the technique used to the segmentation: obviously to split the image vectors into the
groups created from the logos collection the methodology has to be the same, or similar. In
this section there are described the classi�cation steps for the Variance-Balanced Decision
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Tree and for the (Semi-)Random Vectors, two di�erent procedures to give a better idea of
the aim of this section.

Nevertheless, only for a general knowledge, with the other techniques as K-Means or
Spline the procedures are pretty similar to the Random Vectors, the idea is to use the
centroids, for example, to compute the signature to retrieve the candidates, instead to use
directly the random vectors.

6.1.1 Variance-Balanced Decision Tree

The Variance-Balanced Decision Tree technique discussed in the Section 5.1 portended to
create a model, de�ned before an height, with the Flickr Collection vectors. With the tree
model we were able to pass through it with all the logos vectors, so obtaining a leafID for
each SURF points of the brands. Looking the �gure 6.1 there are in the end of the leaves
a list of vectors, these ones are the logos points located in the relative leafID, so each of
these bins of vectors is a class of candidates.

Figure 6.1. This is a model tree through that are segmented the logos brands. In the leaves there
are the lists of the points with the relative leafID.

Given the input image SURF points, the procedure is analogous to the segmentation,
because it has to go through the model tree to catch its leafID or, more in general, its



6.1 Classi�cation Methodology 37

signature. To do this the steps are the same, in each node there are stored two value: the
number of the dimension and the split value. So, to each node the SURF vector compare
its value of the relative dimension and if is bigger it has to continue to the right side,
otherwise on the left one. This procedure has to be done until the last level, where there
are the leaves.

Figure 6.2. This is the procedure to classify a SURF vector extracted from an input image.
Through a tree model it keeps a leafID (or signature) and with this, it retrieves all the logos in
the same leaf as candidates.

So from a list of image SURF vectors, we obtain a signature for each of them and we
have to take all the candidates of these signature, that is all the points in the lists with
the leafID computed from the SURF input points. Look the �gure 6.2 to see a graphic
explanation.

6.1.2 (Semi-)Random Vectors

With Random Vectors the procedure to classify the input SURF vectors is more simple.
For this technique the model is just a �le with the random vectors. So, obviously using
the same model used in the segmentation, we have to compute the signature for the input
image points. Looking the �gure 6.3, for each input vectors it has to compute the signature
simply with matching between the input point and all the random ones, storing a 1 or a
0 in function of the value of matching metric, if it is positive or negative. Once we give
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the signature we take all the logos points that have been stored with the same signature
during the segmentation, and save them as candidates attending the ranking.

Figure 6.3. Given a SURF vector, compare it with the model of Random Vectors to obtain a
signature: with a matching between the input vector and a random vector, if the value is positive
return 1 otherwise 0, and this for each random vectors. After that, you have to retrieve all the
logos segmented with the same signature.

To classify the input SURF with the Semi-Random Vectors the procedure is exactly
the same. As we said the di�erence is only in the construction of these vectors.

6.1.3 Other Techniques

The other techniques describes in the Section 5.3 have a similar methodology for the clas-
si�cation. The aim is the same: use the model and the relative segmented logos to classify
the input image vectors.

Using the K-Means Clustering described in the Section 5.3.1, the model is a list of the
centroids computed after the application of the K-Means technique to the logos collection.
Once segmented the logos vectors, it computes the centroids, that are simply the repre-
sentative vector for each group. So, as illustrated in the �gure 6.4, we match each SURF
points extracted from the input image, to all the vectors in the kmeans model, in other
words to all the centroids, keeping the most similar one with the highest value of match.

As the other technique, all the candidates logos points of the obtained centroid are
taken as candidates. The next step is commonly with all the technique: is the ranking of
the candidates.
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Figure 6.4. Computed the centers of the logos collection, we obtain a list of centroids vectors, we
have to match the input SURF with all of these and to choose the best one. The candidates are
all the logos with grouped with this centroid.

6.2 Ranking of the Candidates

At this moment, we have an inde�nite number of candidates points retrieved in the im-
age classi�cation. The goal is that all these vectors have to be analyzed, with the aim of
discarding the false positive keeping only the correct candidates. How we can achieve this?

It's required some how to order these points: the last ones are going to be discarded,
but to understand which are good and which not, we need to rank all of them. The goal is
to understand which vectors, of the candidates, have a really similarity with the image ones.

There are many ways to do this, the easiest one is simply to count how many candidates
points are in each logo, so we can order the brands logos by a number of comparison: the
�rst logo candidate is the logo with more candidates points. This is a fast method, but it's
too much naive because it had some problems. The segmentation creates many groups,
and sometimes there are some vectors that are not so unique but are more similar to noise.
For the segmentation idea all these points have to store in the same segment. Making an
example we are talking about points useless to the pattern matching: as the white points,
or with black background or in the corner of the image.. points not good for the detection.
So, all the bins have a constant number of candidates, but these group have a huge number
of commons vectors: these are not useful to de�ne the correct candidates: we have to �lter
them.
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In this section there are described two techniques, the �rst one is a variation of the
Naive Technique but with a weight technique used in text mining : TF-IDF. The second
one is a innovative idea based on the distance point-to-point of each SURF Vectors. The
aim is to compare the distances value of the logos candidates to the distances of the points
in the input image: if a set of points have the same distance in an image and in a logo,
than it's possible that the image contains that logo. To understand better let's see the
next two section.

6.2.1 TF-IDF

The TF-IDF is a weight technique used in information retrieval and text mining. It's a
statistic method to misure the importance of a word in a document. Technically it's the
fusion of two di�erent measurement:

� TF: (Term-Frequency) The importance of a text increases proportionally to the num-
ber of times a word appears. Usually this value has to be normalized.

� IDF: (Inverse Document Frequency) The terms that appear in many documents are
less important. (i.e. "the", "at", ..)

Let's see how it works: call N the total number of documents, ki the term (or word),
ni the number of documents that contain the i-term. The weight given from the TF-IDF
will be:

wi = tfi ∗ log N
ni

To apply this technique to this project, it is necessary to see the thing in a di�erent way.
The term ki, or word in text retrieval, are the signature of the points; the text documents
ni are the logos images. So with term frequency in logo detection, it means how many
times a logo contains a signature, and it's possible to avoid the commons terms with the
IDF.

The advantage of this technique is that it gives more important to the points that
are not so commons, assuming that the points more rare are more discriminative to the
detection. Besides it's very simple to implement and with a fast computation.

6.2.2 Proportional Technique

This technique is based on the distance between the SURF points. To understand better,
look the �gure 6.5: there is a logo with the extracted SURF points plotted, we are talking
about the set of the distances from a point to another. The idea is to compare not only the
SURF vectors but also the distance between them. However, the problem is that it's not
possible to compare the distances, because the scale of the image is di�erent and the brands
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could be in a di�erent orientation, etc. . . To do this we have to compare the proportions
instead of the distances.

Figure 6.5. This is a simple image with some features points plotted. To understand the Propor-
tional Technique you have to image to compute the distance between each of these points. They
will be stored in a matrix of distance.

So, �rst of all it's required to store a matrix of distances of all the points (for each
logo): it has to be a distance point-to-point, so if a logo has in average 100 of points, the
matrix will be an half-matrix of 100x100 values.
When we retrieve all the candidates vectors from the image SURF points, we obtain for
each logos some commons points. Now we can do two di�erent thing:

� Compute the distances between the retrieved points in the image of a logo, and the
relative of the logo. If the proportions are similar than the current logo candidate
takes more point in the rank.

� For each logo candidate with some commons points in the image, compare all the
distances of the images to all the distances of the logo (yet built) and keep the more
similar proportions if present. Why this variant? This one is more expensive and
it has a bigger computational cost, but assume there are some errors during the
classi�cation step, so it means that some very commons SURF points between the
image and the correct logo, are split in di�erent classes. They will never be ranked
together. With this variant of Proportional Technique, we take in exam all the points
of all the candidates logos another time, like a second chance, and we compare the
proportion to �nd similar distances between the points. If there are similar values
it's probably that this logo is in there.
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Chapter 7

Conclusions and Future Developments

This thesis, as we said in the introduction, is a piece of a bigger work of a research project.
There are not mentioned all the experiments and the tests results for two reasons: they are
still in developments and they are not include directly on my thesis' job. However, there
are some observations and conclusions to discuss.

Talking about the Variance-Balanced Decision Tree, described in Section 5.1, there are
some points of discussion about the way to divide the vectors. It splits the collection in
function of the variance: the aim is to obtain two di�erent sub-trees, sets of points that
are more di�erent as possible. So, the dimension is chosen by the maximum variance, and
the splitting value is chosen by the median. The problem is there: the median is a precise
value and it could divides two vectors even they have this value very close, but with the
threshold in the middle. Let make an example to understand: looking the Figure 5.1 the
splitting dimension in the second node is the 45th with threshold of 122. If there are two
vectors with the value in this dimension of 121 and 123, so very close, they for sure will
be divided at this node. The risk is to put in di�erent groups some descriptors instead
very similar. For this reason in the project there was implemented another kind of decision
tree: a ternary decision tree. The aim is the same, but the splitting works in a di�erent
manner: there are two threshold values and not only one given by the median. As shown
in Figure 7.1 they have chosen to create three subsets with the same dimension.

Figure 7.1. This is the idea of the Ternary Tree splitting: instead to split the collection by the
median value, it takes two threshold to obtain three subsets of constant dimension.
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This new segmentation method has to correct the VBDT problem, but the experimen-
tation and the tests about that are not be done yet.

Using the Random Vectors there are interesting results during the logo detection of an
input image. One of the issues, is how to treat the "very common random vectors": those
vectors that have a huge number of candidates points. It's possible to assume that they are
something like noise or, in other words, they represents some very commons characteristics
not useful to the segmentation. In this case a smart solution way should be �lter all these
candidates to loose a lot of false positives.

About the ranking techniques, there are good results with the Proportional Rank but
the computational time still be the problem. We compute earlier all the distances for each
logo points, storing one matrix for each logo, but to calculate the distances of the image
points and make the proportional to each of the candidates, takes a lot of time.
The other method TF − IDF works �ne, it's a good compromise to give precision and
computational speed.

7.1 Future Developments

There are masses of ways to develop this thesis, and of course this project. In this section
there is a description of a bunch of solutions, modi�es and future ideas. Some of there are
based on papers that could help the goal of this project, other ones are a sets of corrections
that could optimize the technique used.

Proportional Rank

There is a simple but interesting development of the Proportional Rank. Instead to count
only the matched points between the input image and the candidates logos, we compute
the proportional distance to all the features vectors. So, in this case we can re-consider
points that don't have a match but they are a good ones, maybe because they are in a
di�erent group or in a �ltered one, given to them a second change. This is a way to recover
lost information or false negatives.

The problem is still to be the computational time, because the calculation of the pro-
portion of all the distances between all the points could take a long time. Nevertheless this
method could be also a way to evaluate a segmentation/classi�cation technique, comparing
only the correctness of them. Than we can understand if the logos retrieved are the best
ones or not, and if the ranking technique used works well.
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Bag of Visual Words

Bag of Visual Words is a method to represent image, and regards the problem of automatic
image categorization[33, 34, 35].

The idea is based to a features collection segmentation like the work done in this project.
As explained in [36], treating each cluster as a visual word, we can see an image as a bags
of visual word to be more precise as a vector contained the weighted count of each visual
word. The di�erence is about how manage these words: they apply techniques used in text
categorization as term weighting, stop word removal, weighting of visual words, etc. . .

The main problem of this "concept" is how to build the clusters, because they have to
make an hard selection of the vectors: all the group created have to be very similar. The
goal is to obtain a grouping based on the content like a categories: "landscape", "portrait",
"object". . . to have a separation of meaning. In my advise the best solution is to divide
the collection more in details as: "sun", "sea", "wall", "table", "door". . . but in this way
the problem is still in the detection of the features. We have to work on each value of the
descriptor vectors to be able to understand what every point means. Starting by a vocab-
ulary of this type we can easy understand what is represented in a image. For example, if
we found: "chair", "table", "person", "bottle". . . we can assume that it contain a scene in
a bar, or in a restaurant. Moreover if we add to each visual word a weight, and we count
a big number of "chair" and "bottle" the assumption of "bar" is most probable.

This concept have di�erent developments, and it has all the characteristics to become
a landmark for the future of image detection.

Image Segmentation

It's not the �rst time in this thesis that we talk about the image segmentation. The main
assumption is that: an image should be a set of di�erent objects and, of course, they should
be a set of di�erent surfaces. The idea is to split these surfaces and to analyze all these as
a separate image. Why? The hypothesis is simple: a logo has to be in a de�ned region,
not in the middle.
Based on this idea, we can divide the image in image-segments and extract the features of
each of them, so we compare a set of points detected in a region with all the logos' points.
The comparison should be faster and more precise without many false negative.

Now the issue is how to segment an image. There are very good algorithms in literature,
personally I have tested [29] and [30], respectively from MIT and Berkeley. In the Figure
7.2 there are posted a couple of examples to understand what we are talking about.
There are di�erent parameters to set: to smooth the input image before segmenting it,
values of thresholds and values of post-processing. By these it's possible to obtain bigger
or more precisely regions. For our goal it's better work with big segments, so we can detect
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Figure 7.2. Examples of Segmentation techniques, the �rst one by Berkeley and the second one
by MIT.

a logo inside them. Because the descriptor, as SURF and SIFT, extract a lot of points in
the corner or close to borders, so if a logo is selected as a single region, we can't �nd it.
However both these methods are well documented, they are written in C and Java, and
the code can be downloaded for free.
So, it will be interesting make a sets of tests with them.
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